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Magnetoacoustic tomography with Magnetic Induction (MAT-MI) is a noninvasive electrical conductivity imaging approach that 

measures ultrasound wave induced by magnetic stimulation, for reconstructing the distribution of acoustic source in biological tissue. 

Acoustic inhomogeneity significantly affects the propagation of sound waves. The difference in sound velocity results in distortion of 

the sound source during reconstruction. In order to achieve more computational accuracy especially on the conductivity boundaries 

and interfaces of inclusions, we provided a new algorithm for MAT-MI to image the impedance distribution in tissues with 

inhomogeneous acoustic speed distributions. The purpose of this algorithm is to reconstruct the distribution of acoustic source in 

acoustic inhomogeneous medium more accurately, the reconstruction algorithm is the split Bregman method. In this paper, we built a 

model of acoustic inhomogeneity and calculated the forward solution, solved the inverse problem. In the forward solution, it is possible 

to achieve good accuracy and stability using our computational model using Generalized Finite Element Method (GFEM). In the 

inverse problem, it uses the new algorithm to accurately reconstruct the distribution of sound sources, and the sound speed distribution 

was reconstructed using symmetrical transducers with the split Bregman method. The results show the feasibility of the forward solver 

and inverse solver in MAT-MI, and the contrast of reconstruction images could be improved. 

 
Index Terms—MAT-MI, split Bregman method, the forward solution, the inverse problem  

INTRODUCTION 

edical imaging technology in modern medicine play an 

increasingly important role. Different tissues have 

different conductivities and different electric constants, and 

their electrical properties are sensitive to both physiological 

and pathological conditions. Therefore, the imaging method 

based on the electrical properties of biological tissue has great 

potential for early diagnosis. 

Magnetoacoustic tomography with magnetic induction 

(MAT-MI) [1] is a hybrid imaging technology combining the 

ultrasonic and the electrical impedance ones. In MAT-MI, an 

object is placed in an external static magnetic field B0 and a 

time-variant magnetic field B1 to induce the eddy currents J in 

the object. The eddy currents are subject to Lorentz forces to 

induce sound vibrations in the object. The emitted sound 

signals are detected around the object to reconstruct the 

electrical impedance images of the imaging object. 

Existing reconstruction algorithms for MAT-MI are based 

on the assumption that the acoustic properties in the tissue are 

homogeneous, the velocity of sound in the tissue was constant 

and that reflection and refraction were also ignored during 

propagation of the sound wave. In fact, the speed of sound in 

human tissue can vary. This change reduces the spatial 

resolution of the MAT-MI image. 

In this study, we used the data detected by the sensor to 

reconstruct the distribution of acoustic properties in the 

biological tissue. The speed of sound is used to reconstruct its 

source. we built a model of acoustic inhomogeneity with 

GFEM and calculated the acoustic source, solved the 

distribution of the acoustic pressure signal, and used new 

algorithm to calculate the sound source reconstruction. Finally, 

we are able to solve complex sound propagation problems and 

reconstruct images of sound sources with variable sound 

speeds. 

METHODS 

In this paper, we use GFEM to model the inhomogeneity of 

the tissue and solve inhomogeneity medium. The wave 

equation governing the pressure distribution is given in (1) 
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where p , r , t and sc represent the pressure, the spatial point, 

time and the acoustic speed in acoustic media, respectively. 

We use split Bregman method to model the inhomogeneity 

of the tissue and solve inhomogeneity medium, Conventional 

algorithms include artificial time evolution (ATM), lagged 

fixed point algorithm, prime-dual method, and so on. Although 

these methods are computationally simple, but because of the 

convergence of the diffusion operator is poor, so these 

methods are slow convergence, reconstruction is not ideal.  

In order to improve the accuracy and convergence of the 

reconstructed image, a new split Bregman algorithm [2-5] is 

used to reconstruct the MAT-MI sound source. 

First, an auxiliary variable d and an equality constraint are 

introduced to transform the formula-norm regularization 

method into a constrained optimization problem 
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 And then (2) rewritten into the corresponding 

unconstrained optimization problem 
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Where greater than zero is called the relaxation factor.  
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Bregman distance is defined as 
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Respectively, ),( dE   at ),( kk d  for the sub-

differential of   and d. 

It can be seen that the Bregman iteration is a process of 

converting the original problem 
1l - norm regularization 

method into an iterative solution of a class of unconstrained 

optimization problems and updating the Bregman parameter 
k

db . 

SIMULATION STUDY AND RESULTS 

In the simulation, a cross section of a 3D model with 

concentric spherical model was used to test the feasibility of 

the proposed algorithm in solving the forward and inverse 

problems described above. The parameters of the concentric 

spherical simulation model are listed in Table 1. The 

distribution of the acoustic source, the acoustic pressure signal, 

and the acoustic source reconstruction signal are solved, 

shown in Fig. 1 to Fig. 6. 
TABLE 1 

PARAMETERS AND COORDINATES OF THE MODELS 

Model Name 
Conduct-ivity 

(S/m) 

Radius 

(m) 

Acoustic speed 

(m/s) 

 

Outer Sphere 

1  
0.25 0.03 1500 

Inner Sphere 

2  
0.04 0.01 1950 
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)

Acoustic Source Distribution at Z=0 Plane
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Fig. 1. Acoustic source distribution[mP]    Fig. 2. Comparation of pressures 
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Fig. 3. Eddy current distribution[A/m2]  Fig. 4. acoustic speed distribution 
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Fig.5. Phantom model           Fig.6. Conductivity to be reconstructed 
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Fig. 7. Reconstructed acoustic speed  Fig. 8. Acoustic source reconstruction 

 

Fig. 1 the calculated of acoustic source distribution at Z=0 

plane was showed. From fig. 2 we can see the distribution of 

the “acoustic pressure” signal. Fig. 3 shows eddy current dis-

tribution. the acoustic speed distribution results are shown in 

Fig. 4. The phantom model is shown in Fig. 5. Fig. 6 shows 

the relative conductivity of the actual value, that is, conductiv-

ity contrast is restored. The acoustic speed reconstruction re-

sults are shown in Fig. 7. Fig. 8 shows acoustic source recon-

struction results. Using the algorithms described in section 2.  

As shown in Fig. 8, the 2-D MAT-MI image agrees well 

with the cross section of the phantom in terms of shape and 

size of the reconstruction. The results show that the phantom 

model and simulation are identical within tolerance. 

CONCLUSION AND DISCUSSION 

In conclusion, we combined the relationship between 

symmetrical transducers with the purpose new method to 

determine the distribution of sound speed. The processing of 

acoustic source reconstruction is split-bregman method. The 

results show that the split-bregman iterative algorithm has a 

competitive edge in the estimation of the conductivity, 

reconstructing the image, the position of the edge and the 

computational speed. Compared with the previous algorithm, 

this approach accelerates the reconstruction by 50%. Using 

newly provided algorithm, we have evaluated this approach 

with an eccentric model, and the feasibility has been tested in 

our computer simulation studies. The simulation results are 

promising and suggest that this algorithm is potential to 

become an important reconstruction approach of MAT-MI.  

ACKNOWLEDGMENT 

This work was supported in part by the NSF of Hebei Prov-

ince under Grant No. E2015202292 and E2015202050, re-

search project in Hebei Province under Grant No. 

C2015005012, No. 15272002 and No. 15275704. 

REFERENCES 

[1] Xu Y. and He B. “Magnetoacoustic Tomography with Magnetic 

Induction (MAT-MI)”, Physics in Medicine and Biology, vol. 50, 2005, 

pp. 5175-5187. 
[2] L. Proekt and I. Tsukerman, “Method of overlapping patches for 

electromagnetic computation,” IEEE Trans. Magn., vol. 38, 2002, pp. 

741–744.  
[3] I. Tsukerman, “General tangentially continuous vector elements,” IEEE 

Trans. Magn., vol. 39, 2003, pp. 1215–1218.  

[4] Tsukerman I., “A flexible local approximation method for electro- and 
magnetostatics”, IEEE Trans. Magn., vol. 40, no. 2, 2004, pp. 941-944. 

[5] Goldstein T, Osher S. The split Bregman method for L1-regularized 

problems[J]. SIAM journal on imaging sciences, 2009, pp: 323-343. 


